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RELATIVE EQUILIBRIA FOR TWO RIGiD BODIES
CONNECTED BY A BALL-IN-SOCKET JOINT *

Li-Sheng Wang P.S. Krishnaprasad

Electrical Engineering Department
&
Systems Research Center

University of Maryland, College Park.

ABSTRACT. For simple mechanical systems with symmetry, a variational
principle on configuration space determines relative equilibria. ‘Here, this
principle of symmetric criticality is applied to a problem of coupled rigid
bodies. Numerical optimization by CONSOLE (a package intended origi-
nally for optimization based control system design) is shown to be an effective

technique to search for some of the relative equilibria.

1 Introduction
This paper is part of an ongoing program to understand the dynamics and control of
multibody systems from a modern point-of-view. In recent years, engineering applications

have brought into focus, questions concerning the dynamics of systems of kinematically

* This work was supported in part by the AFOSR University Research Initiative Pro-
gram under grant AFOSR- 87-0073 and by the National Science Foundation’s Engineering
Research Centers Program: NSFD CDR 8803012.
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coupled rigid and flexible bodies. In [16], these are referred to as Eulerian many-body
problems to emphasize the role of Euler forces (or frame forces) in determining the nature
of inter-body interactions. Eulerian many-body problems arise as models of robotic
manipulators, high speed mechanical machinery, complex spacecraft with articulated
components, space-based sensors, etc. See Wittenburg[31] and [5],[7] for treatments of

engineering gnestions and formulation of equations of motion.

In recent work [3][4][12][15-17][21][24-27][29][30], modern geometric techniques have
been brought to bear on certain classes of Eulerian many-body problems. Included among
the classes of problems investigated are rigid bodies carrying rotors, planar many-body
systems, three dimensional rigid bodies coupled by ball-in-socket joints, and rigid bodies

with flexible attachments.

In the present paper, we investigate the structure of relative equilibria in the
dynamics of two rigid bodies connected by a ball-in-socket joint. We follow the framework
of [12] and obtain a variational characterization of relative equilibria using a theorem of
Smale. A key geometric condition is derived. Numerical search for extremal critical points
is carried out using CONSOLE, a software package originally intended for optimization-
based design.

The results of this paper can be considered as part of a program to determine the
phase portrait of coupled rigid body systems. In his ongoing doctoral dissertation work
at Berkeley (preliminary results presented at an AMS Summer Research Conference on
Control Theory and Multibody System at Bowdoin, August 1988), George Patrick has
computed relative equilibria for certain restricted classes of coupled rigid body problems.
The restrictions involve material symmetry and the present paper does not require such
symmetries. Patrick’s methods involve direct symbolic calculations while here we use a

variational principle.

The model problem treated in this paper should be taken as illustrative (partly
inspired by early examples of multibody communication satellite design [11][23]), but the
techniques apply to other configurations as well. Attitude control of a system such as the

one in this paper is under investigation and we hope to report on this in a later paper.
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2 Mechanijca} Setting

Body 1

We introduce the following notations,
To: inertia] frame of reference in space.
O: origin of the inertia) reference system,.
My center of mass of body 1,
Ay: center of mass of body 2, 1
Iy orthonoma] frame op body 1 with origin at Ay .

Ay rotational coordinate transformatjon matrix from Iy

3

Figure 1 Rigid Bodjes connected by the Ball-in-Socket Joint
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I'y: orthonomal frame on body 2 with origin at M,.
Aj: rotational coordinate transformation matrix from I'; to T.
dy: vector from the joint to M, in the frame I';.
dz: vector from the joint to M, in the frame I';.
r1: vector from O to M) in frame Ty.
ro: vector from O to M in frame T'y.
ro: vector from O to the system center of mass in frame I'y.
m: total mass (= my + ma2).
@1 : vector from M; to a point of body 1 in the frame I';.
q1: vector from O to the same point of body 1 as @, above in the frame I'g.
@2 : vector from M; to a point of body 2 in the frame T'5.
g2 vector from O to the same point of body 2 as @, above in the frame I'y.
w: vector from O to the joint in the frame I'y.

We have the kinematic relations.

g1 =r1+ A1Q1. (1)
g2 =r2 + A2Q;. (2)
mro = myry + mara. (3)
ry = w+ A dy. (4)
ry = w + Agdy. (3)

Also we know that A; and A; belong to the special orthogonal group SO(3).
Let p1(-) denote the mass measure of body 1 in the frame I'; and p2(-) denote the
mass measure of body 2 in the frame I';. The kinetic energy of body 1 can be thus written

as

1 .
K, = '2'/ l42(Qu)l*dpur(Q1)-
B,
Expanding the above by using (1), (2) and the formula [|z||? = tr(zz'), we have the form

, . 1 . .
Ky = %“1‘1 “2 + EtT(AlIlAT).
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where I is the coefficient of inertia of body 1, defined by

I =/B Q1QTdp(Q1),

and tr(-) denotes the trace of a matrix.
The kinetic energy of body 2 has a similar form. We thus have the total kinetic

energy expressed as
K=K+ K,
i 1 . . . 1 : :
= DLl 4+ Str(A L AT) + T2l + tr(An T AT).

By (8)-(5), we may write the total kinetic energy in terms of the total linear momentum

p= mr"o of the system.
K = (A LAT) + Str(As LAT) + S))drdy — Aada? + —|p|.
2 177 9 277 9 2m

Here ¢ = m—":i'l‘"f; is the reduced mass. Since there is no potential assumed, this is also the
Lagrangian of the system.

The configuration space is SO(3) x SO(3) x R}. The system is invariant under
translation of the inertial reference frame, i.e. we have a symmetry group action on the

configuration space
®: R®* x (SO(3) x SO(3) x R*) — SO(3) x SO(3) x R®
(A (A1, Az, 7)) — (A1, A2, A + 7).
We can symplectically reduce the system by R® (see Marsden and Weinstein[20],
Abraham and Marsden{1]) which in turn corresponds to jumping to the center of mass

frame. This is also done in [12] and for planar problem in [21][29][30]. After this reduction,
the reduced Lagrangian is

1, . . 1 . . . .
= str(ABAT) + Str(AeLAT) + 2]l Ardy — dody |

which is a function on T(SO(3) x SO(3)).
Although the mechanical system considered here is exactly the same as in [12],

the Lagrangian is expressed in terms of coefficients of inertia referred to different body
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frames than the one they use. Ours is based on the body frames affixed to centers of
mass. By applying the formula for change of coefficient of inertia by translation, one
checks that the results are the same. In the next section, we outline the general theory of
simple mechanical system with symmetry to the point of characterizing relative equilibria.
Standard references for the next section are Smale[28] and Abraham and Marsden[1]. See

also Libermann and Marle[18], Arnold[2], and Guillemin and Sternberg[13].

3 Mechanical Systems with Symmetry

Let (@, < -, >) be a Riemannian manifold with the Riemannian metric < -,- >.
Let G be a Lie group. ® : G x @ — Q is a group action on the manifold @ that leaves the
Riemannian metric invariant. Let V: @ — R be a G-invariant function on the manifold,
ie.

V(®(z))=V(z) Vgegq,

where ®,: M — M is defined by
®,(z) = ®(g,z).

Let 7:TQ — @ be the canonical projection. We now define a Lagrangian L:TQ — R to
be, for v, € TQ with 7(v;) =z,

1
L(vz) = 5 < vz,vz > - V(ZI).

It follows that the Lagrangian is G-invariant and hyperregular. We thus have the

corresponding invertible Legendre transformation FL:TQ — T*Q given by
FL(vx)(wz) =LV, Wy >
Let wo be the canonical symplectic two form on T*Q, and define

wr = (FL) wp.
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Then it is easy to see that wy, is a symplectic form on T'Q. The action A:TQ — R is

now

Avy) = K€ vg,v; >

and the energy F = A — L can be found subsequently. Thus we have two equivalent
hamiltonian systems (TQ,wr,E) and (T*Q,wo,H = E o FL™!). These are simple
mechanical systems with symmetry in the sense of Smale[28][1]. The hamiltonian function
on T*Q can be written as (for a, € T*Q with 7*(a;) = z where 7* is the canonical

projection on T*Q),
H(a;) = -;— <€ FL™Y(az), FL™ (az) > + V(z).
We define an inner product on T;@ by
< g, fr >1eq@ = K FL™Ya,), FL™'(8:) > .

Then we may write
1
H(a,) = 5 <@z,02 >74Q + V(z).
Let <& denote the Lie algebra of G and $* is the dual of the Lie algebra. By the Corollary
4.2.11 in [1], we know that the lifted action
3T G xT*Q - T*Q

is symplectic and has an Ad*-equivariant momentum mapping given by J: T*@Q — 3%,

I(az)(§) = az (§q(x)) (6)

where £ € S and {q is the associated infinitesimal generator of & on Q.

Now we introduce the notion of relative equilibrium in a general setting. Assume G
acts on a symplectic manifold (P,w) freely and properly. Then the quotient space P/G is
a smooth manifold with an induced Poisson structure. For any G-invariant hamiltonian
function H on P, we find the induced function H:P/G — R in the following way. Letting
7 be the projection from P to P/G, we have

H o #(z) = H(xz).
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Since H is G-invariant, H is well-defined. The quotient P/G carries an induced Poisson

structure[19]). Given f,g € C®(P/G), the induced Poisson bracket of f and g is

{fig}o7={fof,gof}e.

where {, }o is the standard Poisson structure on the symplectic manifold (P,w).
With this induced Poisson structure and the induced hamiltonian function, we define

the projected hamiltonian vector field Xz on P/G. For any f € C*(P/G),
Xglfl = {f,H}.

Definition (Relative Equilibrium)

ze € P is a relative equilibrium for Xy if
Xg(#(ze))=0.

Assume there is an Ad*-equivariant momentum mapping J on P. Then we have the
following characterization of a relative equilibrium.
Theorem (Relative Equilibrium)

ze € P is a relative equilibrium for Xy iff there exists a { € S such that 2, is a
critical point of

He=H-< J,£>,

“where < J,€ >: P — R is given by z + J(z)(£). .
Proof

Let F,: P — P be the flow of H on P. We have the induced flow F} : P/G — P/G
satisfying

Fiof = #oFy.

Thus 2, is a relative equilibrium iff Xz (#(z.)) =0 iff

d

ZEF‘ (F(2e)) =0

d
E‘T’ (o} Fg(Ze) = 0.
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That is
7o Fi(z.) = F(2.). Vi

Thus, for all ¢, Fi(2.) must belong to the same orbit. And there exists a one-parameter

subgroup ¢(t) € G such that
| Fi(ze) = ®g(1)(2e).

By the one-to-one correspondence between one-parameter subgroups in G and its Lie

algebra, we know that there exists a £ € & such that
Fi(2e) = Bezpre(2e).
Differentiate both sides with respect to ¢ and set t = 0, we get
Xn(ze) = {p(2e).

On the other hand, by the definition of a momentum mapping, X<¢> = £p. Thus
XH(ze) = -X<J,$>(ze)v

which implies
XH-<se>(2.) =0.

By the nondegeneracy of w, we have
dH~< L, £ >)(z.) =0,

i.e. z. is a critical point of He = H— < J,{ >.

Conversely, if z. is a critical point of Hg, also from the nondegeneracy of w,

XH-<se>(2e) = 0.
which implies
Xu(ze) = Xcae>(ze) = Ep(2e).
Thus, by uniqueness of the integral curve,
Ft(ze.) = Derpre(ze).
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It follows that z. is a relative equilibrium for X g from the previous arguments.
QED |

Remark 1.

This theorem can be considered a corollary to the Souriau-Smale-Robbin Theorem
(see Abraham and Marsden([1)). It is also discussed in [27].
Remark 2.

We note that if a point z. is a relative equilibrium point, the motion F%, (z)
is a stationary motion, i.e. it corresponds to a group orbit. If for instance the group
G = SO(3), this would imply that F_(z.) corresponds to a uniform rotation about a

fixed axis £ in space.

We now apply this theorem to the setting of simple mechanical systems with
symmetry discussed before. By the hyperregularity of FL, for any a, € T*Q, there
is an element v, € TQ such that a; = FL(v;) and

az(w) =<K v,,wP Yw e T;Q.
Thus the momentum mapping, which is given by (6), can be written as
a; (€g(2)) = < FL7)(az),éq(z) > .
Defining B¢(z) = FL(£q(z)), we have
< J,& > (ag) =< az,Be(z) >140 -
We can now write
He(az) = % < az,ar >1+q@ +V(2)— < az, Be(z) >1q .

By determining the norm on T@ through the inner product and completion of squares,

we may express Hg as

He(as) = Hllas = Be(@)lP + V(@) - 5 < Be(a), Be(s) >1q .
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By the above theorem, computing the relative equilibria is equivalent to finding critical

points of He. Letting a; = (z,p) we have

He(e,p) = 5llp - Be(=)I + V() - 5 < Be(e), Be(e) >1va -

It is then easy to check that the necessary conditions for (z.,p.) to be a critical point of

H; are
Pe = Be(z.) (7)

and
d:,[V(2) - 5 < Be(a), Be(z) >1a] =0
We summarize the algorithm (principle of symmetric criticality) to find relative equilibria.
Algorithm
0. Pick £ € .
1. Search for the critical points z. of the function
VeeQ— R
Ve(@) = V(z) - 5 < £a(a),alz) >

2. Put z, in (7) to find the corresponding p. = B¢(z.).
We note that the computation in step 1 is fully on the configuration space.
Remark 3. (Historical)
.- The principle of symmetric criticality as stated here appears as Theorem 1.1 in Part
II of Smale[28]. Smale also notes that special versions have been known earlier, e.g. in the
study of symmetric geodesics. See also pp. 355 of [1], Theorem 16.7 in Hermann{14], and
Palais[22].
Remark 4. (Symmetry of V)
It should be noted, for a given £ € &, V¢ has the symmetry,

Ve(®4(2)) = Ve(2),

for all g € G¢ = {g € G|Ad,(£) = £}, the stabilizer of £. Thus V¢ induces a function Ve

such that the diagram in Fig. 2 commutes.
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Ve

Q > R
IN /’;\g
Q/G¢

Figure 2 Symmetry of V¢

Typically, Ve is a Morse function on Q/G¢ and Te (%) is a nondegenerate critical
manifold in the sense of Bott[6], if .- is a critical point of V.
Example

One application of the principle here is to find the relative equilibria of the planar
three-body system discussed in [29][30]. If we plot the function Ve (for particular kinematic
parameters) on the joint space, we get the picture in Fig. 3, from which the fundamental

equilibria defined in [29][30] can be easily seen. These are the relative (joint) configurations

(0,0), (0,x), (=,0), (x,n).

4 Relative Equilibria for Coupled Rigid Bodies
For the mechanical system described in section 2, the Riemannian metric on

» T(SO(3) x SO(3)) is given by the (symplectically) reduced Lagrangian as
L (W, W), (W1, W) >= tT(W1I1W1T) + tT(WzIng‘) + ¢l|Whd; — Wzdz“z.

where (117, 1W,) belongs to T(S0(3)x SO(3)). We know that every element in T(SO(3) x
S0O(3)) can be represented as

T(SO(3) x SO(3)) = {(A1, Az, 1 A1, th242): A1, Az € SO(3),w1,w; € R*},

where ": R® — s0(3) is the one-to-one map from R® to the skew-symmetric matrices,

0 -—-wz3 w
W= w3 0 —w1 .
—wy Uy 0



X,

{
ALK
XY
) () ¢)

%4

Figure 3 Function 175 for the planar 3-body problem

In terms of wy, wy, we have
< (W, Wa), (W1, Ws) = tr(th; Ay [ ATOT )+ tr( Ao L AT 6T ) + €| by Ay dy — o Aad2))%.

It is a straightforward calculation to show that

o

tr(QIoT) =< w, I w>p

[+
where I is a coefficient of inertia tensor and I is the associated moment of inertia
tensor and <,>g is the Euclidean inner product. Upon further simplifications and

rearrangements, we get
L J ATw
< (W, W), (0, W) > = () () (7172 ) (400,

where o )
Ji=1, +ed"dy

J2 = 192 + fd';r(iz
Ji2 = 6(2144’{.4232
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The group action to consider is defined on SO(3) x SO(3), the configuration space, relative
to an observer at the system center of mass. The diagonal action of the group G = SO(3)

is given by ‘
¥: G x (SO(3) x SO(3)) — SO(3) x SO(3)

(R’ (Al ’ A2)) g (RA] ’ RAz ).

Letting £ € S, the corresponding infinitesimal generator can be found as

Eolr, 4) = 5| (expt)(ds, 42)
t=0
== » ((exptf)Al, (exptf)Ag)

= (€A1, €Az).

Since here the potential energy V is identically 0, the function V is
VoD (aTeyTy [ J1 Ji2)) (AT
Ve(A1, Az) = ) ((Al 7 (429) ) JIIT; J2 Ail"f ’

It is clear that V¢ is invariant under G¢ = {R € G: R = £} which is isomorphic to st.
By the compactness of SO(3) x SO(3) we know that for each {, V¢ has critical
points. We need to find the conditions on A;, Az so that the gradient of V; with respect
to A;, Az is 0. Equivalently one can check the vanishing of the differential dV; on the
space T(SO(3) x SO(3)).
Given f : M — R a smooth function on a smooth manifold M, v, € T: M which

generates a curve ¢ : R — M with ¢(0) = z, the differential df at z is defined by
d
df(a)vs) = 5| f(#(2)).
t=0
Let W € T(S0(3) x SO(3)),
W = (41, Az,1141,0242).

The curve in SO(3) x SO(3) generated by W is (' 4;,e'"2Az). Thus we have the

formula

d . .
dVE(AliAZ)(W) = EZ ov'f(etun Al’etw2A2)v

t=
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Explicitly, we get the following final form (here A = AT 4;),
dVe(Ar, A2)(W) = < w1, EMLIWATE >E + < w2, EAr L ATE >E
+e< wl,éAlﬁlAégAgf >E +€< wz,éAztizAT(ilA?f >E
+ €< wy, Aydi€ Apdy ATE > +e < wy, Aydab A d1ATE >

Thus we know that the necessary conditions for a critical point of V; are
EALTLATE + € A1d1 Ady AT E + eArdr€ A2dy ATE = 0,
EAr Jo ATE + € Ayda ATy ATE + eAydyt Ardy ATE = 0.

Now if we define Q; = AT¢, and 2y = AT¢, we get the conditions (in terms of cross

products in R?)

Q1 x Ji + edy x (1 x A(de x Q2)) =0, (8)
Q2 x J2Q; + edy x (Q2 x AT(dy x 1)) =0, (9)

which are exactly the conditions found by Poisson reduction in [unpublished notes
of P.S. Krishnaprasad).
In step 2 of the algorithm of section 3, we put in the A;, A2 found by solving the

above conditions into

p = Be(A1,42)

Let p € T*(S0O(3) x SO(3)) be represented as

p = (6141,8242).

We find that a3, az can be expressed as

oy = A1 + G(Aldl X Az(dz X Qg)),
az = Ay Joy + €(A2d2 X Al(dl X Ql)) .
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Also we know that the relation between §2; and 2, is
Q; = AQ,.
If we now let s; = A;d;, s; = Aadz, from (8), we get
ATe x 71AT¢ + eAT sy x (AT€ x A(AT s, x AT€)) =0,

which implies

Ex A1 J1ATE +es x (6 x (83 x €)= 0. (10)

Taking the inner product of (10) with £, we obtain a key necessary condition for a relative

equilibrium

£-(s1Xs82)=0. (11)

We note that ¢ is the axis of rotation of the whole body, s;, s2 are the spatial vectors from
joint to body 1 and 2, respectively. From (11), we conclude that, at relative equilibria, £,

81, 82 must lie on the same plane, no matter what the inertias are.

5 Numerical Method

Although we can get the same critical conditions (8) (9) by other methods, the
principle of symmetric criticality provides more information. Notice that in the first step of
the algorithm in Section 2, we simply try to find the critical points of V¢ on SO(3)x SO(3)
without any additional constraint. Thus one has an associated unconstrained optimization
problem. Numerical optimization schemes can be used to. find extremal relative equilibria.
This issue is discussed in this section.

By the symmetry of the system, we know that the function V¢ is invariant in the
direction tangent to the orbit of G¢. Thus in the search for critical points, we should avoid
these directions. It turns out that the usual gradient-type method is a good choice. Here,

we use an optimization package named CONSOLE which was developed at the University
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of Maryland[8]. The current version of CONSOLE basically uses the steepest descent
‘method and is thus applicable to our circumstances.

In formulating the optimization problem, in order to avoid other constraints arising
from the restrictions on SO(3), e.g. ATA = Identity, we use Cayley’s parametrization.

That is, any element A € SO(3) can be represented by

1 1+a?-ak-a? 2(a;a2 - asz) 2(aya; + ap)
= 2(a1az2 + a3) 1—a?+ a2 - a2 2(aza;3 — a;)
SRR ) 1 Ta; —a3
1+ai+a;+a 2(a1a3 — az) 2(azas + a3 1—a? — a2 +a?)

where a;,a2,a3 € R. The problem can now be written as

ertremize Ve(Ay, Az)

{ a,0a2,a3 }

b1, b2, b
where (a1,az,4a3), (b1,b;,b3) are the parameters for A;, A,, respectively.
The CAD package CONSOLE is composed of two main programs: CONVERT,

SOLVE. CONVERT reads a problem description file which describes the optimization
problem to be solved. SOLVE then performs the optimization process with the interaction

of user and/or some simulator. For more details, see Fan et el.[9){10]. The problem

description file for our problem is easily formulated as follows.

design_parameter al init=0
design_parameter a2 init=0
design_parameter a3 init=0
design_parameter bl init=0
design_parameter b2 init=0
design_parameter b3 init=1
objective "V-xi"
minimize {
import al, a2, a3;
import b1, b2, b3;
double cost();
§eturn cost( a1, a2, a3, bil, b2, b3 );
good_value=0
bad_value=100
where the subroutine cost() reads a system description file containing the information of

L, I, dy, da, &£, my, my and then returns the value of the function Ve. By choosing
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different moments of inertia and initial structure, we can perform the optimization. In
the process, one thing we learned is that if the augmented inertia is diagenal, the rate of

convergence is faster. Thus preliminary diagonalizations should be performed to get speed

up.
In the particular case that
m; = 3.0
me = 2.0
di=(001)
da=(-111)
£=(001)

2 0 0
L=10 3 O
0 0 4

0

4

0

0
0],
5
the relative equilibrium we found by numerical methods was
0.0 -0.939 0.344
Ay =100 -0.344 -0.939
1.0 0.0 0.0
0.007 0.350 —0.937
A, = | —-0.528 0.796 0.294
0.849 0.493 0.191
s1 = (0.344 — 0.939 0.0)

s2 = (—0.593 1.618 — 0.165)
Q1 = (1.0 0.0 0.0)

Q, = (0.849 0.493 0.191)

a; = (0.0 0.0 10.269)

ag = (—0.004 0.007 14.321).

Several relative equilibria corresponding to different choices of parameters are shown in

Fig. 4. Case 1 in that figure corresponds to the above numerical result.
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Case 1 4 Case 2 V'\

[o{’o 1)
4 6[001) A
[ 0.344 -0.939 0 | A, d,
d . [ -1.3966 -0.1311 0.1796]
A%y > >
A2 d2
fl2d2

[ -0.593 1.6182 -0.1646 ]
[ 2.2134 0.2081 -0.2397 ]

Case 3 4 Case 4 A
£
oo [ -3.048 1.507 1.5614 ]
1 A2d2
[ 1.2868 -0.5866 O | [ -1.2868 0.5866 O ]
A.d
A, d, > 202 - R
gE[111]
A4

[ 3.0662 -1.498 -1.5434 ]
Figure 4 Relative Equilibria

Note that in all cases, either s; = A1d;, s; = Azdy are on a straight line or they

and £ are on one plane. It matches the conclusion we made at the end of section 4.

6 Conclusion

We have shown how to determine relative equilibria by numerical search. A key
geometric condition (Equation 11) appears as a consequence of the variational formulation.

Dynamic simulations are being carried out to determine further details of the phase-

portrait.
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